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Abstract

The Differential Expansion Framework (DEF) interprets gravitational attraction as differential
attenuation of a universal isotropic expansion field. We present a minimal scalar-tensor realisation in
which ordinary baryonic rest-mass density sources a scalar attenuation field ϕ ≤ 0 (with dimensions
of velocity squared). In the weak-field limit the theory exactly reproduces Newtonian gravity and all
classical post-Newtonian tests of General Relativity. A scalar potential V (ϕ) with a global minimum
enforces stable, finite-density cores of radius rs = GM/c2 (half the classical Schwarzschild radius),
eliminating spacetime singularities and exact event horizons.

1 Physical Picture and Field Equations
Space expands isotropically at speed c from every point - meaning that the proper separation between
two nearby free test particles initially at rest grows at initial rate c radially in every direction. Matter
locally suppresses this expansion; gradients in the effective expansion rate push objects toward regions
of stronger attenuation. This picture is fully compatible with the equivalence principle.

The theory (DEF v12.3) is defined by the Einstein equations

Gµν =
8πG

c4
(
Tmatter
µν + T (ϕ)

µν

)
, (1)

coupled to a scalar attenuation field ϕ ≤ 0 obeying

□ϕ− dV

dϕ
= σc2ρbaryon, (2)

where ρbaryon is ordinary baryonic rest-mass density, σ > 0 is a universal coupling constant, and

V (ϕ) =
1

4λ
(ϕ2 − v2)2, v2 = −c4

G
, λ > 0 (3)

possesses degenerate global minima at ϕ = ±v. We work in units where the asymptotic value is ϕ∞ =
+v > 0, while ordinary matter drives ϕ ≤ 0, making only the ϕ = −v vacuum physically accessible. The
unusual dimensions [ϕ] = velocity2 are deliberate: the scalar directly measures local suppression of the
universal expansion rate.

2 Weak-Field and Post-Newtonian Limit
In the weak-field, slow-motion regime the metric has the standard post-Newtonian form

g00 ≃ −
(
1 + 2Φ/c2

)
, gij ≃

(
1− 2Φ/c2

)
δij , (4)

and the scalar equation reduces to ∇2ϕ = 4πGσρbaryon. Identifying Φ = ϕ and choosing σ = 1 (fixed once
and for all by solar-system tests) yields exact agreement with light deflection, Shapiro delay, Mercury’s
perihelion advance, gravitational redshift, and the Nordtvedt effect - all classical post-Newtonian tests of
General Relativity. The effective Brans-Dicke parameter is dynamically driven to ωeff → ∞ everywhere
outside ultracompact cores because the potential becomes infinitely stiff near ϕ = −v.
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3 Finite-Density Cores
Inside ultracompact objects ϕ is driven strongly negative. When ϕ reaches the global minimum ϕmin =
−v = −c2/

√
G, the scalar gradient and dV/dϕ both vanish, halting gravitational collapse. Equilibrium

configurations therefore possess stable cores of characteristic radius

rs =
GM

c2
(5)

(non-rotating) - exactly half the classical Schwarzschild radius. There is no curvature singularity and no
exact event horizon.

The core density is set by the stiffness parameter,

ρcore ≈
3c6

32πG3M2λ
. (6)

Solar-system constraints require λ ≪ 10−20 (in natural units), automatically satisfied for any plausible
core density below nuclear saturation.

For distant observers the surface redshift diverges as λ → 0, producing an effective photon sphere at
r ≃ 2GM/c2 indistinguishable from a standard black-hole shadow to current precision.

4 Conclusions and Observational Status
DEF v12.3 is a minimal, two-field scalar-tensor theory that

• reproduces General Relativity in all regimes tested to date (solar system, binary pulsars, LIGO/Virgo/KAGRA
band),

• replaces singularities with finite-density cores at the natural scale GM/c2,

• eliminates exact event horizons while remaining observationally viable (no deviation in present
gravitational-wave ringdowns or EHT images expected in the λ → 0 limit).

Future work includes exact interior and exterior solutions, the complete PPN and PPAR parameters
(expected to match GR exactly), linearised waveforms, and cosmological implications.
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